Supervised Methods for Feature Extraction

نویسندگان

  • Oswaldo Ludwig Júnior
  • A. C. de Castro Lima
  • Leizer Schnitman
  • J.A.M.Felippe de Souza
چکیده

It is present in this paper the feature extraction for pattern recognition tasks. It is proposed two approaches. In the first, it is used weights to scale the coordinates of the features vector in order to increase the precision of statistical classifiers. Genetic algorithm is intended to do weight adjustments. In the second approach the Battacharyya metric is suggested. Theses approaches make possible the feature vector compression by the elimination of coordinates non-pertinent to the classification problem in subject. There are other techniques like Principal Components Analysis (PCA) or entropy, but these approaches do not consider the target output. This fact implicate in the impossibility of non-pertinent features identification.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Supervised Feature Extraction of Face Images for Improvement of Recognition Accuracy

Dimensionality reduction methods transform or select a low dimensional feature space to efficiently represent the original high dimensional feature space of data. Feature reduction techniques are an important step in many pattern recognition problems in different fields especially in analyzing of high dimensional data. Hyperspectral images are acquired by remote sensors and human face images ar...

متن کامل

کاهش ابعاد داده‌های ابرطیفی به منظور افزایش جدایی‌پذیری کلاس‌ها و حفظ ساختار داده

Hyperspectral imaging with gathering hundreds spectral bands from the surface of the Earth allows us to separate materials with similar spectrum. Hyperspectral images can be used in many applications such as land chemical and physical parameter estimation, classification, target detection, unmixing, and so on. Among these applications, classification is especially interested. A hyperspectral im...

متن کامل

Overlap-based feature weighting: The feature extraction of Hyperspectral remote sensing imagery

Hyperspectral sensors provide a large number of spectral bands. This massive and complex data structure of hyperspectral images presents a challenge to traditional data processing techniques. Therefore, reducing the dimensionality of hyperspectral images without losing important information is a very important issue for the remote sensing community. We propose to use overlap-based feature weigh...

متن کامل

جاسازی خط ویژگی وزن‌دار برای استخراج ویژگی تصاویر ابرطیفی

One of the most preprocessing steps before the classification of hyperspectral images is supervised feature extraction. Because obtaining the training samples is hard and time consuming, the number of available training samples is limited. We propose a supervised feature extraction method in this paper that is efficient in small sample size situation. The proposed method, which is called weight...

متن کامل

Fisher Discriminant Analysis (FDA), a supervised feature reduction method in seismic object detection

Automatic processes on seismic data using pattern recognition is one of the interesting fields in geophysical data interpretation. One part is the seismic object detection using different supervised classification methods that finally has an output as a probability cube. Object detection process starts with generating a pickset of two classes labeled as object and non-object and then selecting ...

متن کامل

MEFUASN: A Helpful Method to Extract Features using Analyzing Social Network for Fraud Detection

Fraud detection is one of the ways to cope with damages associated with fraudulent activities that have become common due to the rapid development of the Internet and electronic business. There is a need to propose methods to detect fraud accurately and fast. To achieve to accuracy, fraud detection methods need to consider both kind of features, features based on user level and features based o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006